SYSTEMATIC REVIEW An Introduction

SONGPHAN CHOEMPRAYONG

Department of Library Science, Faculty of Arts The Arc of Memory Research Unit, Faculty of Arts Behavioral Research and Informatics in Social Science Research Unit, Sasin School of Management Chulalongkorn University songphan.c@chula.ac.th

Agenda

1	

Basic concepts in systematic review

systematic review process

Search strategies and data filtering

Critical appraisal

Disclaimer

- This presentation does not contain legal advices or provide scientific conclusions.
- The content does not serve as a standard practice or guidelines in conducting a systematic review in substantiating health claims or food-health relationship.
- The audiences may need some background in understanding or conducting a clinical research study.

	Traditional Literature Reviews	Scoping reviews	Systematic reviews
A priori review protocol	No	Yes (some)	Yes
Registration of the review protocol	No	No ^a	Yes
Explicit, transparent, peer reviewed search strategy	No	Yes	Yes
Standardized data extraction forms	No	Yes	Yes
Mandatory Critical Appraisal (Risk of Bias Assessment)	No	No ^b	Yes
Synthesis of findings from individual studies and the generation of 'summary' findings ^c	No	No	Yes

^aCurrent situation; this may change in time. ^bCritical appraisal is not mandatory, however, reviewers may decide to assess and report the risk of bias in scoping reviews. ^cBy using statistical meta-analysis (for quantitative effectiveness, or prevalence or incidence, diagnostic accuracy, aetiology or risk, prognostic or psychometric data), or meta-synthesis (experiential or expert opinion data) or both in mixed methods reviews

Munn, Z., Peters, M.D.J., Stern, C. *et al.* Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. *BMC Med Res Methodol* **18**, 143 (2018). https://doi.org/10.1186/s12874-018-0611-x

Scoping Review	Systematic Review
Research question(s) often broad	Focused research question with narrow parameters
Inclusion/exclusion can be developed post hoc	Inclusion/exclusion usually defined at outset
Quality not an initial priority	Quality filter often applied
May or may not involve data extraction	Detail data extraction
Synthesis more qualitative, typically not quantitative	Quantitative synthesis often performed as well as qualitative synthesis, depending on the evidence found
Used to identify parameters and gaps in a body of literature	Normally assess the quality of studies and generates a conclusion relating to the focused research question

Brien, S.E., Lorenzetti, D.L., Lewis, S., Kennedy, J. & Ghali, W.A., 2010, 'Overview of a formal scoping review on health system report cards', *Implementation Science* 5(1), 2. https://doi.org/10.1186/1748-5908-5-2

Α

	Filtered coffee			No	coffe	fee Mean Difference			Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Agudelo-Ochoa 2016	2.85	0.63	49	2.77	0.67	25	6.1%	0.08 [-0.24, 0.40]	
Aro 1985	3.24	0.34	12	3.13	0.34	12	8.3%	0.11 [-0.16, 0.38]	
Rosmarin 1990	3.29	0.39	21	3.3	0.39	21	11.0%	-0.01 [-0.25, 0.23]	
Shaposhnikov 2018	3.3	0.75	107	3.3	0.8	53	9.2%	0.00 [-0.26, 0.26]	
Wedick 2011	2.59	0.4	30	2.72	0.4	15	10.0%	-0.13 [-0.38, 0.12]	
Bak 1989	-0.03	0.69	34	0.18	0.89	34	4.3%	-0.21 [-0.59, 0.17]	
Dusseldorp 1991	0.09	0.39	21	-0.06	0.4	21	10.8%	0.15 [-0.09, 0.39]	
Fried 1992	0.05	0.41	75	0.04	0.39	25	19.2%	0.01 [-0.17, 0.19]	_
Superko 1991	0	0.6	123	-0.11	0.52	58	21.1%	0.11 [-0.06, 0.28]	
Total (95% Cl)			472			264	100.0%	0.03 [-0.05, 0.11]	•
Heterogeneity: Chi ² = 5	.59, df =	8 (P =	0.69);	² = 0%					
Test for overall effect: Z = 0.80 (P = 0.42) -1 -0.5 0 0.5 Favors filtered coffee Favors no coffee									Favors filtered coffee Favors no coffee

В

			Coffee	Теа		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Aro 1985	0.12	0.13	12	12	31.8%	0.12 [-0.13, 0.37]	
Aro 1987	0.23	0.11	42	42	44.4%	0.23 [0.01, 0.45]	
D'Amicis 1996	-0.02	0.15	56	28	23.9%	-0.02 [-0.31, 0.27]	
Total (95% CI)			110	82	100.0%	0.14 [-0.01, 0.28]	
Heterogeneity: Chi ² = ² Test for overall effect: 2	: 0%				-1 -0.5 0 0.5 1 Favors coffee Favors tea		

Schoeneck, M., & Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. *Nutrition, Metabolism and Cardiovascular Diseases, 31*(5), 1325-1338. <u>https://doi.org/10.1016/j.numecd.2020.12.032</u>

Copyright © 2021 The Authors Terms and Conditions

Schoeneck, M., & Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. *Nutrition, Metabolism and Cardiovascular Diseases, 31*(5), 1325-1338. <u>https://doi.org/10.1016/j.numecd.2020.12.032</u>

Copyright © 2021 The Authors Terms and Conditions

Guiding Principles/ Standards of Evidence for the Substantiation of Food Health Claim (Health Canada, 2011)

- Systematic approach
- Transparency
- Comprehensiveness
- Human evidence
- High level of certainty
- Demonstration of causality
- Biological relevance of the claimed effect
- Feasibility of consumption of effective dose
- Health claim wording

Literature Review: Objectives

Narrative Approach -

- Describe what is going on
- Explore ideas
- Find alternatives
- Develop hypothesis
- Support/deny an argument

Systematic Approach

- Explore ideas
- Find alternatives
- Develop hypothesis
- Test theories
- Evaluate effectiveness of solutions
- Do the solutions work better?
- How does it influence outcomes?

Literature Review: Process

Literature Review: Data sources

Narrative Approach ← → Systematic ApproachData source=AnythingBata sourceAnything

Literature Review: Data sources

Narrative Approach

=

Anything

Systematic Approach Data source

_

Research Findings

For example, FDA (2009)

• Human interventions

Observational studies

Animal model studies Ecology studies

US Food and Drug Administration. (2009). Guidance for industry: evidence-based review system for the scientific evaluation of health claims. Office of Nutrition Labeling and Dietary Supplements. https://www.fda.gov/regulatory-information/search-fda-guidance-based review system for the scientific evaluation of health claims. Office of Nutrition Labeling and Dietary Supplements. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-evidence-based-review-system-scientific-evaluation-health-claims

Literature Review: Synthesis

Narrative Approach ← → Systematic Approach Synthesis = = = Reorganization

Critical appraisals

Literature Review: Synthesis

Narrative Approach
Synthesis

=

Reorganization

Systematic Approach Synthesis

_

Critical appraisals

For example, FDA (2009) -Certainty of conclusion -Quality of methodology -Totality of scientific evidence -Significant scientific agreement

US Food and Drug Administration. (2009). Guidance for industry: evidence-based review system for the scientific evaluation of health claims. Office of Nutrition Labeling and Dietary Supplements. <u>https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-evidence-based-review-system-scientific-evaluation-health-claims</u>

Why is it so important to be systematic ?

Bias reduction

Toward objectivity

Transparency

Replicable

"System" in systematic review

Structural

Team effort

Exhaustive task

Record & report

Systematic review as a research method

Quantitative method

Mixed method

Qualitative method

Overview of reviews

- To summarize evidence from *systematic reviews*
- Describe clinical and methodological inclusion and exclusion criteria. The study design of interest is the *systematic review*
- Comprehensive search for relevant systematic reviews
- Assess methodological quality/risk of bias of included systematic reviews. Also report risk of bias assessments for primary studies contained within included systematic reviews.

Set the scene	Define the food-health relationship				
	Define the food or property of the food and the health effect				
	Develop and define the review question				

Set the	Identify the search terms to be included in the search strategy				
scope	Define the inclusion/exclusion criteria				

Identify relevant studies	Perform the literature search	
	Finalise the list of studies included	in the systematic review

Evaluate	Construct summary tables and extract data from studies			
	Assess methodological quality and applicability of each study			
evidence	Assess methodological c	quality and applicability of the studies as a group		
	Synthesise results			

Overall decision	Assess causality (consistency, strength, dose-response, temporality)
	Consider applicability, bioequivalence (where necessary) and dose
	Conclude whether a causal relationship has been established

Figure 1. Overview of the process for conducting a systematic review to self-substantiate a food-health relationship

New Zealand Ministry of Primary Industries, Biosecurity Science, Food Science & Risk Assessment Directorate, Regulation and Assurance Branch. (2016). Systematic review of a foodhealth relationship. https://www.mpi.govt.nz/dmsdocument/11263/direct

Food-health relationship

Health effect means an effect on the human body, including an effect on one or more of the following – (a) a biochemical process or outcome; (b) a physiological process or outcome; (c) a functional process or outcome; (d) growth and development; (e) physical performance; (f) mental performance; (g) a disease, disorder or condition.

Food health relationship

Health claim (FAO, 2009)
Nutrient function claims
"Food X is a source of/high in A."

- Other function claims
 "Food Y contains x grams of
 substance A."
- Reduction of disease risk claims

 "A healthy diet low in nutrient or substance A may reduce the risk of disease D.
 Food X is low in nutrient or substance A."

FDA (2009)

- Have the studies specified and measured the substance that is the subject of the claim?
- Have the studies appropriately specified and measured the specific disease or health-related condition that is the subject of the claim?

FDA (2009)

 Are the studies use appropriate surrogate endpoints of disease risk?

For example:

(1) serum low-density lipoprotein (LDL) cholesterol concentration, total serum cholesterol concentration, and blood pressure for cardiovascular disease;

(2) bone mineral density for osteoporosis;

(3) adenomatous colon polyps for colon cancer; and

(4) elevated blood sugar concentrations and insulin resistance for type 2 diabetes.

Question Types

- Etiology/causation/origination/risk factor
- Diagnosis/analytical method/evaluation tool
- Intervention/therapy/solution
- Prevention/prophylaxis
- Prognosis/prediction
- Meaning/interpretation/perception

Question Elements

- P OPULATION/CONDITION
- I NTERVENTION
- **C** OMPARISON
- **O** UTCOME
- T IME
- **S** STUDY

Question type	Definition	Template
Intervention or therapy	To determine which treatment leads to the best outcome	In (P), how does (I) compared with (C) affect (O) within (T)?
Etiology	To determine the greatest risk factors or causes of a condition	Are
Diagnosis or diagnostic test	To determine which test is more accurate and precise in diagnosing a condition	In(P), are/is(I) compared with(C) more accurate in diagnosing(O)?
Prognosis or prediction	To determine the clinical course over time and likely complications of a condition	In (P), how does (I) compared with (C), influence (O) over (T)?
Meaning	To understand the meaning of an experience for a particular individual, group, or commu- nity	How do (P) with (I) perceive (O) during (T)?

Templates and Definitions for PICOT Questions^{5, 6}

Process

Neri-Numa, I. A., Cazarin, C. B. B., Ruiz, A. L. T. G., Paulino, B. N., Molina, G., & Pastore, G. M. (2020). Targeting flavonoids on modulation of metabolic syndrome. *Journal of Functional Foods*, 73, 104132.

Neri-Numa, I. A., Cazarin, C. B. B., Ruiz, A. L. T. G., Paulino, B. N., Molina, G., & Pastore, G. M. (2020). Targeting flavonoids on modulation of metabolic syndrome. *Journal of Functional Foods*, 73, 104132.

Process

PRISMA 2009 Flow Diagram

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting /tems for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 PRISMA http://www.prisma-statement.org/ Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Schoeneck, M., & Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. *Nutrition, Metabolism and Cardiovascular Diseases, 31*(5), 1325-1338. <u>https://doi.org/10.1016/j.numecd.2020.12.032</u>

Copyright © 2021 The Authors Terms and Conditions

Review criteria

- Eligibility criteria
- Search strategies
- Screening and selection
- Data extraction
- Statistical analysis and treatment of qualitative data
- Critical appraisal

Eligibility Criteria for Health Claims

• Example

https://www.canada.ca/en/health-canada/services/foodnutrition/legislation-guidelines/guidancedocuments/guidance-document-preparing-submission-foodhealth-claims-2009-1.html#tbl8b

Process

Principles

- Comprehensiveness
- Transparency
- Strict to the protocol

- 1. Search strategy
- 2. Multiple rounds of searching
- 3. Data management
 - Deduplication
 - Document ID
 - Document storage and retrieval
- 4. Title/abstract screening
- 5. Full-text screening

Search no. 1 (PubMed and Cochrane Database of Systematic Reviews, 4 June 2019):

Filters: Systematic Reviews; Guideline

Title/Abstract:

Lipidemia* OR Dyslipidemia* OR Hyperlipidemia* OR Cholesterol* OR Lipoprotein* OR

MeSH Terms:

Dyslipidemias OR Hyperlipidemias OR Cholesterol OR "Cholesterol, LDL" OR

Lipoproteins

AND

Title/Abstract:

Food OR Foods OR Diet OR Diets OR Dietary OR Garlic OR "Allium sativum" OR Coffee OR Tea OR Chocolate OR Cacao OR Cocoa OR Spinach OR Spinacia OR Grapefruit* OR "Citrus Paradisi" OR Probiotic* OR Yoghurt OR Yogurt OR Malus OR Apple* OR Vitis OR Grape OR Grapes OR Wine OR Nut OR Nuts OR "Soy protein" OR "Soy proteins" OR "Soybean Proteins" OR "Soybean Protein"

OR

MeSH Terms:

Food OR Diet OR Garlic OR Coffee OR Tea OR Chocolate OR Cacao OR "Spinacia oleracea" OR "Citrus paradisi" OR Probiotics OR Yogurt OR Malus OR Vitis OR "Soybean Proteins" OR Nuts

Schoeneck, M., & Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. *Nutrition, Metabolism and Cardiovascular Diseases, 31*(5), 1325-1338. <u>https://doi.org/10.1016/j.numecd.2020.12.032</u>

Copyright $\ensuremath{\textcircled{C}}$ 2021 The Authors $\underline{\mbox{Terms}}$ and $\underline{\mbox{Conditions}}$

Search no. 2 (PubMed and Cochrane Central Register of Controlled Trials (CENTRAL), 4 June 2019):

Coffee[Title/Abstract] OR coffee[MeSH Terms]

AND

lipidemia*[Title/Abstract] OR dyslipidemia*[Title/Abstract] OR hyperlipidemia*[Title/Abstract] OR cholesterol*[Title/Abstract] OR lipoprotein*[Title/Abstract] OR <u>dyslipidemias[MeSH</u> Terms]) OR hyperlipidemias[MeSH Terms] OR cholesterol[MeSH Terms] OR cholesterol, LDL[MeSH Terms] OR lipoproteins[MeSH Terms]

AND

randomised controlled trial[Publication Type] OR controlled clinical trial[Publication Type] OR randomised[Title/Abstract]) OR placebo[Title/Abstract] OR clinical trials as topic[MeSH Terms] OR controlled clinical trials as topic[MeSH Terms] OR randomised controlled trials as topic[MeSH Terms] OR randomly[Title/Abstract] OR trial[Title] OR "random allocation"[Title/Abstract]

Schoeneck, M., & Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. *Nutrition, Metabolism and Cardiovascular Diseases, 31*(5), 1325-1338. <u>https://doi.org/10.1016/j.numecd.2020.12.032</u>

Data Filtering

- Title Filter
- Abstract Filter
- Full text Filter

Process

Process

Health Santé Canada Canada

Food Health Claims Submission Form Food Directorate Protected when completed Formulaire de demande d'approbation d'allégations santé relatives aux aliments Direction des aliments Protégé une fois rempli

Table 12a. Summary of intervention studies addressing the food/health relationship (e.g., oats beta glucan fibre and heart disease risk).

Reference and Quality Rating (Author, year)	Aim of Study	Design • R (Randomized) • NR (Non- randomized) • C (Control group) • SB (Single-blind) • DB (Double-blind) • P (Parallel) • CO (Crossover)	Sample Characteristics • Country • Health status • Setting (metabolic unit, free-living subjects) • Age range • Gender (M, F) • No. recruited • No. rendomized • No. in final sample	Exposure and Duration • Food matrix • Food dose; method and frequency of consumption • Duration of intervention • Design and/or duration of stabilization period, washouts, follow-ups	Background Diet & Assessment Tool	<u>Results & Statistics</u> • Changes in health effect • Adverse effects	Relevant Authors' <u>Concellusions</u>

Data extraction

Article	Study design	Parameters	Results	Remarks
ID: #XXX	Method: XXX	Demographic:	Result A (Unit):	 Reasons for
Author: XXX	Population: XXX		XX	incompletion
Journal: XXX	Sample size: XX		Result B (Unit):	 Conflict of
Year: XXX	Instrument: XX		XX	interest
Affiliation: XXX	Study site: XX		Result C (Unit):	 Conflict of
	Validity and	Observed	XX	results
	reliability testing:	variables:		reported
	XX	Factor A: XX	Side	 Quality of
		Factor B: XX	effects/Harms	study (in
	Group:	Factor C: XX		general)
	Intervention: XX			
	Control: XX			

Example

Intervention Studies

https://www.canada.ca/en/health-canada/services/foodnutrition/legislation-guidelines/guidancedocuments/guidance-document-preparing-submission-foodhealth-claims-2009-1.html#tbl13a

Observational Studies

https://www.canada.ca/en/health-canada/services/foodnutrition/legislation-guidelines/guidancedocuments/guidance-document-preparing-submission-foodhealth-claims-2009-1.html#tbl13b

Process

Critical Appraisal

Evaluation of the quality of evidence

Background Information, Expert Opinion

	Quality of evidence	Study design	Lower if ^a	Higher if ^a
	High (4)	Randomized trial	Study limitations – 1 serious – 2 very serious	Large effect + 1 large + 2 very large
Example	Moderate (3)		Inconsistency – 1 serious – 2 very serious	Dose response + 1 evidence of a gradient
	Low (2)	Observational study	Indirectness – 1 serious – 2 very serious	All plausible confounding + 1 would reduce a demonstrated
	Very low (1)		Imprecision – 1 serious – 2 very serious	effect, or + 2 would suggest a spurious effect when results
			Publication bias	show no effect

Example

Assessment	Type of evidence
Strength of recommendation	
Grade A	Good evidence to support a recommendation for use
Grade B	Moderate evidence to support a recommendation for use
Grade C	Poor evidence to support a recommendation
Quality of evidence	
Level I	Evidence from at least 1 properly designed randomized, controlled trial
Level II	Evidence from at least 1 well-designed clinical trial, with- out randomization; from cohort or case-controlled ana- lytic studies (preferably from >1 center); from multiple time series; or from dramatic results of uncontrolled experiments
Level III	Evidence from opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees

NOTE. Adapted from the Canadian Task Force on the Periodic Health Examination [11].

QUALITY OF EVIDENCE

- 1. Is the study question relevant?
- 2. Does the study add anything new?
- 3. What type of research question is being asked?
- 4. Was the study design appropriate for the research question?
- 5. Did the study methods address the most important potential sources of bias?

QUALITY OF EVIDENCE

- 6. Was the study performed according to the original protocol?
- 7. Does the study test a stated hypothesis?
- 8. Were the statistical analyses performed correctly?
- 9. Do the data justify the conclusions?
- 10.Are there any conflicts of interest?

Young, J. M., & Solomon, M. J. (2009). How to critically appraise an article. *Nature Clinical Practice Gastroenterology & Hepatology, 6*(2), 82-91.

Table 2 GRADE table for the effects of foods on LDL cholesterol.

Food	Effect on LDL cholesterol ^a	GRADE evidence
Foods high in n-6 PUFA and/or MUFA and low in SFA; e.g. canola oil	Moderate to large reduction ^b	High eeee
Foods high in soluble fiber; e.g. psyllium, oats, and barley	Moderate reduction	High eeee
Foods with added plant sterols or stanols	Moderate reduction	High eeee
Flaxseeds (whole)	Small to moderate reduction	High eeee
Soy protein	Small to moderate reduction	High eeee
Tomatoes	Small to moderate reduction	High eeee
Almonds	Small reduction	High eeee
Fish	No clear effect	High eeee
Decaffeinated coffee (in place of regular coffee)	No effect	High eeee
Filtered coffee	No effect	High eeee
Foods high in SFA or <i>trans</i> fatty acids (i.e. solid and tropical fats)	Moderate to large increase ^b	High eeee
Unfiltered coffee (in place of filtered coffee)	Moderate to large increase	High eeee
Avocados	Moderate to large reduction	Moderate eeeo
Turmeric	Moderate to large reduction	Moderate eeeo
Hazelnuts	Small to moderate reduction	Moderate eeeo
Pulses	Small to moderate reduction	Moderate eeeo
Green tea	At least small reduction	Moderate eeeo
Fiber whole graine	Small reduction	Moderate anno

Quality of Evidence Grades (GRADE Approach)

Grade	Definition
High	We are very confident that the true effect lies close to that of the estimate of the effect.
Moderate	We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low	Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.
Very Low	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Factors that can reduce the quality of the evidence

Factor	Consequence
Limitations in study design or execution (risk of bias)	↓1 or 2 levels
Inconsistency of results	↓ 1 or 2 levels
Indirectness of evidence	↓ 1 or 2 levels
Imprecision	↓ 1 or 2 levels
Publication bias	↓ 1 or 2 levels

Factors that can increase the quality of the evidence

Factor	Consequence
Large magnitude of effect	↑1 or 2 levels
All plausible confounding would reduce the demonstrated effect or increase the effect if no effect was observed	↑1level
Dose-response gradient	↑1 level

Process

RCT & Meta-analysis

Qualitative

Preferred Reporting Items for Systematic <u>http://www.presnad.Meta-</u> Analyses

Enhancing transparency in https://dx.df@porting4th@88-12-181 synthesis of qualitative research

Process

Follow-up & update

Update search results

Reconsider research questions

Reconsider analytical frameworks

Tools

Systematic Review Toolbox

http://systematicreviewtools.com

Covidence

https://www.covidence.org/home

EPPI-Reviewer

http://eppi.ioe.ac.uk/CMS/Default.a spx?alias=eppi.ioe.ac.uk/cms/er4&

DistillerSR

http://distillercer.com/products/dis tillersr-systematic-reviewsoftware/

SUMARI

https://www.jbisumari.org/

Sysrev

https://sysrev.com/

Abstrackr

http://abstrackr.cebm.brown.edu/

Rayyan

https://rayyan.qcri.org/welcome

Is this systematic review good or bad?

Creditability Generalizability Efficiency User involvement Scientific rigor Timeliness Transparency

Critiques of systematic review

Time consuming Laborious Resource burden Time-sensitive

